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Introduction

Nuclear receptors regulate biological functions such as cell
growth and differentiation, metabolic processes, reproduction
and development, intracellular signaling, and can be involved
in carcinogenesis through the control of gene expression.[1]

Chemicals that disrupt the endocrine system interfere with the
function of nuclear receptors, alter their functions, and conse-
quently cause adverse health effects.[2] Besides natural and syn-
thetic hormones, a broad variety of chemicals show endocrine-
disrupting activity, for example, industrial chemicals such as
cleaning agents, byproducts of industrial processes such as di-
oxins, as well as pesticides and plastic additives. They can
either bind directly to, and thus block, a hormone receptor or
affect the synthesis, transport, metabolism, or elimination of
hormones. To date various nuclear-receptor-mediated hormo-
nal responses to toxic compounds have been reported, includ-
ing xenobiotic effects on the thyroid hormone receptor, the
epidermal growth factor receptor, the aryl hydrocarbon recep-
tor, and the androgen and estrogen receptors.[3]

Endocrine disruptors can alter the physiological function of
the glucocorticoid receptor (GR), leading to the dysfunction of
metabolic, immunological, and central nervous system process-
es. For example, there is evidence that low concentrations of
arsenic[4] and polychlorinated biphenyls (PCBs)[5] can interfere
with glucocorticoid activity. However, many aspects of endo-
crine disruption have yet to be elucidated, such as the long-
term effects of low-level exposure. The presence of com-
pounds with hormonal activity in the biosphere has become a
worldwide environmental concern, which is addressed by vari-
ous regulations in both the US and Europe. In 1996, the US En-
vironmental Protection Agency’s Office of Research and Devel-
opment identified endocrine disruption as one of its top six re-

search priorities and developed a risk-based research ap-
proach.[6] In December 2006, the European Union approved
the Registration, Evaluation, and Authorization of CHemicals
(REACH), a regulation that covers the production and use of
chemical substances. In particular, additional authorization for
substances of “very high concern”, such as endocrine disrup-
tors, is required. In Switzerland, the necessity for a coordinated
interdisciplinary approach has also been recognized, and the
National Research Programme on Endocrine Disruption
(NRP50) was conducted 2001–2007.[7] A reliable method for the
in silico identification of the endocrine-disrupting (or, more
generally, toxic) potential of drugs and chemicals is therefore
regarded as highly desirable by regulatory bodies as well as
the pharmaceutical, chemical, and food industries.

The GR is a ligand-activated transcription factor that controls
a wide variety of biological processes including an organism’s
development, metabolism, and immune response.[8] It can
both activate and repress the transcription of target genes by
binding to glucocorticoid-responsive elements or through
cross-talk with other transcription factors, such as activator
protein-1 or nuclear factor-kB.[9]

The glucocorticoid receptor (GR) is a member of the nuclear re-
ceptor superfamily that affects immune response, development,
and metabolism in target tissues. Glucocorticoids are widely used
to treat diverse pathophysiological conditions, but their clinical
applicability is limited by side effects. A prediction of the binding
affinity toward the GR would be beneficial for identifying gluco-
corticoid-mediated adverse effects triggered by drugs or chemi-
cals. By identifying the binding mode to the GR using flexible
docking (software Yeti) and quantifying the binding affinity
through multidimensional QSAR (software Quasar), we validated

a model family based on 110 compounds, representing four dif-
ferent chemical classes. The correlation with the experimental
data (cross-validated r2 = 0.702; predictive r2 = 0.719) suggests
that our approach is suited for predicting the binding affinity of
related compounds toward the GR. After challenging the model
by a series of scramble tests, a consensus approach (software
Raptor), and a prediction set, it was incorporated into our Vir-
tualToxLab and used to simulate and quantify the interaction of
24 psychotropic drugs with the GR.
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Ligands of the GR, the glucocorticoids, are in wide therapeu-
tic use for their anti-inflammatory and immunosuppressive ac-
tivities, for example, to treat asthma, allergic rhinitis, rheuma-
toid arthritis, and acute transplant rejection.[10] However, a
range of side effects including osteoporosis, metabolic syn-
drome, impaired development, and blunted growth limits their
clinical use.[11] Therefore, the identification of new glucocorti-
coids is still an endeavor in pharmaceutical research and devel-
opment, and in silico tools that aid the rational design of glu-
cocorticoids, particularly by quantifying their binding affinity,
are consequently much needed.

Herein we discuss the development and validation of a 3D
model for the GR that allows the screening of drugs and chem-
icals for potential GR activity. The underlying methodology was
developed at the Biographics Laboratory 3R[12] and compiled
into a virtual laboratory (VirtualToxLab) for the in silico identifi-
cation of the toxic (endocrine-disrupting) potential of drugs
and environmental chemicals.[13]

Methods

The 3D structure of the GR with bound dexamethasone (PDB
code: 1M2Z, 2.5 � resolution, Rfree = 0.267)[14] was obtained
from the Protein Data Bank.[15] For our study, we chose chain A,
which includes 255 amino acid residues, dexamethasone, and
118 water molecules. First, all hydrogen atoms were added to
the structure, and the correct protonation state for the histi-
dine residues was assigned: His645 and His654 were protonat-
ed at their Nd atoms, while His588, His726, and His775 were
protonated at their respective Ne atoms. Next, the hydrogen-
bond network was constructed and optimized, and the struc-
ture was relaxed using the directional force field implemented
in Yeti.[16]

The experimental affinity data for the 110 GR-binding com-
pounds were obtained from multiple sources.[17] Most of the af-
finity data (73 %) are available as IC50 values, the remaining as
Ki values. For their use in our study, we converted the IC50 into
Ki values using the Cheng–Prusoff relation.[18] The binding affin-
ities range from 3.2 � 10�5 to 5 � 10�11

m, with the majority clus-
tering within two orders of magnitude (10�7–10�9

m). For pre-
dnisolone (compound code within this study: A02), a compari-
son of experimental binding affinities obtained from three dif-
ferent sources revealed a difference of more than one order of
magnitude in its Ki value (from 2.4 nm

[17c] to 32 nm
[17a]), sug-

gesting that the predictive power of the model might be
somewhat jeopardized by this fact, as no model can be better
than the underlying experimental data.

The ligand set comprises four different chemical classes: ste-
roids, quinoline derivatives, fluorophenylindazole derivatives,
and spirocyclic dihydropyridine derivatives (Figure 1). The
structures of the compounds and their Ki values[17] are given in
the Supporting Information.

Quinoline derivatives bear a stereocenter. For four com-
pounds of the data set—(R)- and (S)-2,5-dihydro-10-methoxy-
2,2,4-trimethyl-5-phenyl-1H-[1]benzopyrano ACHTUNGTRENNUNG[3,4-f]quinoline
(B25, B26) and (R)- and (S)-2,5-dihydro-10-methoxy-2,2,4-tri-
methyl-5-(3,5-dichlorophenyl)-1H-[1]benzopyranoACHTUNGTRENNUNG[3,4-f]quino-

line (B29, B30)—the Ki values for individual stereoisomers are
available. In both cases, the S isomer shows a higher affinity
than the R counterpart (a factor of 33 for B26/B25 and 114 for
B30/B29).[17b] Docking studies with these stereoisomers to the
GR are in agreement with this observation. Because most of
the quinoline derivatives used were only tested as racemates,
the affinity for the S isomers in our study were corrected by di-
viding their Ki values by a factor of two, in order to account for
the content of the nearly inactive isomer in the sample.

The 3D structures of all ligands were generated and opti-
mized in aqueous solution based on the AMBER* force field[19]

as implemented in MacroModel 6.5.[20] Atomic partial charges
(CM1) were generated with the AMSOL package.[21] To identify
the lowest-energy conformation for all quinolines, fluorophe-
nylindazoles, and spirocyclic dihydropyridines, a conformation-
al search with MacroModel 6.5 was performed (10 000 Monte
Carlo iterations). For the steroids, only the compound with the
highest experimental affinity was investigated, assuming that
all the steroids share a common puckering of the B and C
rings.[22] Each of the 110 ligands was individually docked into
the receptor structure with the software Yeti. To account for in-
duced fit, we used flexible docking based on the Monte Carlo
search protocol, allowing adaptation of the amino acid side
chains that contain at least one atom within 12 � of any atom
in the given ligand. An appropriate consideration of receptor
flexibility would seem to be a prerequisite for the identification
of feasible binding modes, particularly for ligands with bulky
substituents (see below). In our study, we selected the lowest-
energy pose of the most active compound for each chemical
class and subsequently used it as a binding-mode template for
the remaining compounds that belong to the same chemical
class. Details of the binding of a representative compound
from classes A–D (see Figure 1) at the GR are shown in
Figure 2.

The data set was split into training and test compounds[23]

in such a way to maximize the diversity of the training set with
respect to binding affinity and chemical properties. This was
done by grouping the compounds according to chemical class

Figure 1. Compound classes A–D used in the QSAR study: A) steroids (A01–
A17), B) quinoline derivatives (B01–B30), C) fluorophenylindazole derivatives
(C01–C55), and D) spirocyclic dihydropyridine derivatives (D01–D08) ; all 110
structures (along with eight of the prediction set and the 24 psychotropic
drugs) are given in the Supporting Information.
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(i.e. , those that share the same scaffold) and ranking by affinity.
For each group, the most and least active compounds were as-
signed to the training set. From the compounds remaining in
the pool, those with different scaffolds and functionalities were
selected to be part of the training set in order to maximize
chemical diversity. For the QSAR simulations we used a 4:1
ratio, yielding 88 training and 22 test compounds.

Our aim was to establish a quantitative structure–activity re-
lationship (QSAR) for the 110 compounds binding to the GR
using the Quasar and Raptor technologies in consensus-scor-
ing mode.[24] Both Quasar and Raptor are receptor-modeling
concepts that allow multidimensional QSAR. Because the de-
tails of these pieces of software are published elsewhere,[12a, b, 25]

we summarize them here only briefly. We used the so-called
mixed-modeling approach, in which the ligands are docked to
the X-ray crystal structure, and their binding affinity is quanti-
fied using a quasi-atomistic binding-site model thereof. This
approach yields more reliable binding energies than directly
scoring the ligand–protein interactions at the experimental
structure.[26]

In Quasar, the binding site of the protein is represented by a
surrogate, which consists of a 3D surface surrounding the li-
gands superimposed in their bioactive conformation (as ob-
tained, for example, from docking studies at the true biological
receptor) at van der Waals distance. The topology of this sur-
face mimics the shape of the binding site. This surface is then
populated with quasi-atomistic properties corresponding to

those of the amino acids: posi-
tively and negatively charged
salt bridges; hydrogen-bond
donors and acceptors; neutral,
positively, and negatively
charged hydrophobic properties ;
hydrogen-bond flip-flop, as well
as solvent.[12b] Apart from accept-
ing 4D compound input (confor-
mations, poses, protonation
states, and tautomers), Quasar
allows specifically for the simula-
tion of induced fit (correspond-
ing to side-chain flexibility and
moderate backbone motion at
the true biological receptor),
whereby six different protocols
are evaluated simultaneously
(5D-QSAR).[12b] The model family,
typically consisting of 200–500
models, is evolved by using a
genetic algorithm and provides
an averaged prediction for each
compound along with the varia-
tion over the model family.
Quasar employs the following
scoring function derived from
the directional Yeti force field:[12-

b, 16a]

Ebind ¼ Eligand�receptor�Eligand desolvation�E ligand internal strain�TDS�E induced fit

for which Eligand�receptor ¼ Eelectrostatic þ EvdW þ EH bonding þ Epolarization

ð1Þ

DGexp ¼ jaj � Ebind þ b ð2Þ

Using the ligands of the training set, a linear regression of
the experimental (DGexp) and calculated (Ebind) binding affinity
is then obtained [Eq. (2)] . The coefficients a and b are derived
from the correlation of the training set in cross-validation
mode and are later applied to molecules of the test set or new
compounds for which binding affinity should be predicted. In
Quasar, the solvent contribution can be calculated explicitly, al-
lowing the presence of solvent properties on the surrogate
surface, or implicitly, where the solvation terms (ligand desol-
vation and solvent stripping) are independently scaled for
each model within the surrogate family. Each different scaling
reflects a different solvent accessibility of the binding site. Sol-
vation terms are associated with weights that evolve through-
out the simulation (6D-QSAR).[25]

In contrast to Quasar, the binding site in Raptor is represent-
ed by two 3D surfaces, again populated with quasi-atomistic
properties. The two shells allow one to account for various in-
duced-fit mechanisms, observed, for example, with agonists
and antagonists or ligands that differ substantially in size.[12c]

Induced fit may, of course, exert different shapes and magni-
tudes for the two shells. The model development employs a

Figure 2. Details of the binding of a representative compound of classes A–D of the GR used for this QSAR study:
the ligands A) A01, B) B18, C) C12, and D) D02, as well as residues Asn564 and Gln642 are colored by atom type;
the residues lining the hydrophobic pocket are depicted in yellow.
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multistep optimization protocol including domain assignment,
tabu search, and local search.[12c] In Raptor, the scoring function
includes directional terms for hydrogen bonding and hydro-
phobicity, as well as terms for the cost of topological adapta-
tion and the changes in entropy upon ligand binding:

Ebind ¼ Eligand�receptor�T DS�Einduced fit ð3Þ

for which Eligand–receptor = w [EH bonding (shell-1) + Ehydrophobic (shell-1)] +

(1.0�w)·[EH bonding (shell-2) + Ehydrophobic (shell-2)] , and w is the interpola-
tion weight between the two shells.[12c]

Results and Discussion

Protein flexibility remains a major challenge for quantifying the
binding of small molecules to a macromolecular target. Al-
though induced fit is understood to be a key phenomenon for
ligand binding, docking software typically treats the ligand as
a flexible entity but leaves the receptor structure rigid (or
nearly rigid).[27] In the Yeti concept, local induced fit is taken
into account by allowing amino acid side chains to move and
thereby adopt an optimal conformation with respect to the
bound ligand. In particular, the docking of glucocorticoids with
bulky substituents at the 17b-position (see Figure 3) into the
crystal structure of the glucocorticoid receptor may not yield
the correct binding pose, because the binding site would not
seem to be wide enough to accommodate large compounds
such as desoxymethasone 21-cinnamate (A08). For other ste-
roid receptors such as the progesterone receptor,[28] there is
experimental evidence for a local induced fit to accommodate
bulky substituents at position 17. A similar behavior has been
postulated for the androgen receptor.[29] Likewise, bulky li-
gands may indicate steric interference with the GR binding
pocket if the protein structure is kept rigid during docking

(cyan ribbon in Figure 3). In contrast, energetically favorable
binding poses are found when the side chains of the protein
are allowed to adjust to ligand topology (green residues in
Figure 3).

The ensemble of binding modes of the 110 compounds,
identified using flexible docking as implemented in the soft-
ware Yeti,[16b] was used as input for the QSAR technology Qua-
sar.[12b] This mixed-modeling approach allows both the correct
identification of binding mode and the reliable estimation of
binding affinities. The Quasar simulations were based on a
family of 200 receptor models that differ with respect to the
properties mapped on their surface. The family of receptor
models was evolved for 60 000 crossover cycles, corresponding
to 300 generations. For cross-validation we selected a leave-n-
out (n = 10) protocol. Protein flexibility was mimicked using a
total of six induced-fit scenarios.[12b] Throughout the entire sim-
ulation, a static mutation rate of 0.02 was applied during tran-
scription of the quasi-atomistic properties.

The model family converged at a cross-validated r2 value of
0.702 for the 88 training compounds and a predictive r2 value
of 0.719 for the 22 test ligands (see Figure 4 and Table 1). On
average (rms), the calculated binding affinity of the training
and test ligands deviate from the experimental Ki value factors
of 1.5 and 1.6, respectively. The maximal observed deviation of
an individual compound corresponds to a factor of 9.9 in Ki for
the training set and 4.9 for the test set. A representation of
the receptor surrogate with bound dexamethasone (A01)
along with key amino acid residues is depicted in Figure 5. In
comparison with the crystal structure of the GR complexed
with dexamethasone, the receptor surrogate generated by
Quasar properly reproduces the corresponding properties at
the position of the key amino acid residues Asn564, Arg611,
and Gln642, as identified by X-ray at the quasi-atomistic
level :[12b] an H-bond-donating domain (green) corresponding

to the guanidinium moiety of
Arg611, and H-bond-accepting
domains (yellow) mimicking the
carbonyl groups of Asn564 and
Gln642 at the true biological re-
ceptor.

In multidimensional QSAR
(mQSAR), it is of utmost impor-
tance to challenge a model, for
example, by means of a scram-
ble test, an external prediction
set, or by consensus scoring. The
scramble test, which is frequent-
ly used to assess the sensitivity
of a model,[30] consists of a
random shuffling of the binding
affinities of the training set li-
gands with respect to the true
affinity values. If, under these cir-
cumstances, the ligands of the
test set are still predicted cor-
rectly, the model is worthless, as
it is not sensitive to the biologi-

Figure 3. With a rigid protein structure, docking of desoxymethasone 21-cinnamate (A08, shown in space-filling
mode; its chemical structure shown at right) to the crystal structure of the GR, obtained from the dexametha-
sone–GR complex (cyan ribbons and sticks), leads to unfavorable interactions. The following amino acid residues
lining the binding pocket are shown: Tyr735, Met745, Arg611, and Gln570. Cyan stick representations refer to the
positions of amino acids as observed in the crystal structure, whereas green sticks refer to the amino acid position
after flexible docking. While the positions of Arg611 and Gln570 remain almost unchanged, flexible docking
allows the side chains of Met745 and Tyr735 to move and accommodate the 21-cinnamate moiety of A08 (the
most evident movement of Tyr735 is indicated by the red arrow). At left, A08 is rotated 1808 vertically relative to
the standard steroid depiction at right.
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cal data. In our study, 20 scramble tests were performed with a
different shuffling of the biological data for each scramble test.
They yielded an average predictive r2 value of �0.241 com-
pared with + 0.719 for the simulation using unscrambled
values. Only a single simulation gave a positive predictive r2

value (0.375); all others found no correlation (predictive r2<

0.0), demonstrating that the model for the GR is indeed sensi-
tive to the biological data.

Another sensitive issue is the possible overfitting of the
model. We paid particular attention to this problem and moni-
tored the evolution of the predictive r2 value relative to the
cross-validated r2, and stopped the simulation at the point
(300 generations) where the former starts to drop while the
latter continues to rise. As our Quasar model family consists of
200 individual models, the scattering of the individual predic-
tions around the mean value (see Figure 4 A) is another indica-
tor for possible overfitting. Although the ligands of the test set
show a broader distribution, those of the training set scatter,
on average, by a factor of 2–3 about their mean value. An
overfitted model would result in rather small scatterings for
the ligands of the training set.

To achieve consensus, we applied a second methodology
(software Raptor). The Raptor simulation—using the same
ligand alignment and selection—yielded an r2 value of 0.680
and a predictive r2 of 0.519. The comparison of predicted and
experimental binding affinities is shown in Figure 6, and the
performance coefficients are given in Table 1. When compared
with Quasar, the Raptor simulation would seem to yield only
modest predictive power, but considering the limited range of
experimental activity (85 % of compounds cluster within two
orders of magnitude), the chemical diversity of the com-

Figure 4. Comparison of experimental and predicted binding affinities of
A) the training and test set and B) the external test set toward the GR, as ob-
tained with Quasar. Ligands of the training set are depicted as open circles,
those of the test set as filled triangles, and those of the prediction set as
filled circles. Dashed lines are drawn at a factor of 10 from the experimental
value.

Table 1. Summary of the Quasar and Raptor simulations with 88 training
and 22 test compounds.[a]

Simulation r2 q2 rmsd
Training

Max.
Training

p2 rmsd
Test

Max.
Test

Quasar 0.710 0.702 1.5 9.9 0.719 1.6 4.9
Raptor 0.680 n/a 2.1 5.3 0.519 6.1 20.4

[a] r2 : correlation coefficient, q2 : cross-validated r2, p2 : predictive r2 ; the
rmsd and maximal deviation from the experimental binding affinity are
given as a factor (off) in Ki.

Figure 5. Representation of the GR surrogate (Quasar) with bound dexame-
thasone (A01, space-filling representation). The mapped quasi-atomistic
properties are colored as follows: red (salt bridge, positively charged), blue
(salt bridge, negatively charged), green (H-bond donor), yellow (H-bond ac-
ceptor), saddle brown (hydrophobic, positively charged), chocolate brown
(hydrophobic, negatively charged), gray (hydrophobic, neutral). Key amino
acid residues from the X-ray structure[24] (Asn564, Arg611, and Gln642) are
shown as sticks. The analogies between model and receptor are circled and
shown in larger size: green (H-bond donor) corresponding to Arg 611;
yellow (H-bond acceptor) corresponding to the carbonyl group of Gln642,
hidden in the back, and to the carbonyl of Asn564.
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pounds, and the different literature sources for the affinities,
the Raptor model can be considered acceptable in terms of
quality. Moreover, its dual-shell representation can simulate in-
duced fit more realistically, particularly with compounds that
differ substantially in bulkiness, or in the presence of two in-
duced-fit mechanisms. For example, the cinnamate substituent
at position 21 of A08 (see Figure 3) is snugly accommodated
by the outer shell (Figure 7 A), indicating the necessity of side
chain rearrangement in the binding pocket of the protein in
order to allocate additional space for the large substituent. On
the other hand, the inner shell hosts compounds such as dexa-

methasone (A01) that are characterized by a smaller volume
(Figure 7 B). The comparison of predicted binding affinities ob-
tained by the two approaches is shown in Figure 8. The aver-
age deviation is 0.32 logarithmic units (a factor of 2.1 in Ki). For
only two compounds out of 110 (1.8 %), both of which belong
to the test set, the ratio is greater than a factor of 10 (in Ki).
Thus, consensus between Quasar and Raptor predictions has
been achieved. Whereas for prednisolone (A02), the threshold
for acceptance is only slightly exceeded: 1.02 log units (a
factor of 10.5 in Ki), the disagreement for 2,5’-dioxo-2’-phenyl-
3’-ethoxycarbonylspiro(1,4’-acenapthene-1’,4’-dihydroindeno-ACHTUNGTRENNUNG[3,2-b]pyridine) (D06) is 1.73 log units (a factor of 53.7 in Ki).

Although the test set was not used for generating and opti-
mizing the model, its performance was, of course, considered
as a criterion for selecting the final model among all those
generated. To truly challenge the model, a new independent
set of compounds was identified in the literature,[31] and em-
ployed only for this validation step (the compound structures
and their Ki values are given in the Supporting Information).

The chemical property domain of the prediction set (P01–
P08) is included in the model’s property space because the

Figure 6. Comparison of experimental and predicted binding affinities of
A) the training and test set and B) the external test set toward the GR as ob-
tained with Raptor. Ligands of the training set are depicted as open circles,
those of the test set as filled triangles, and those of the prediction set as
filled circles. Dashed lines are drawn at a factor of 10 from the experimental
value.

Figure 7. Raptor model of the GR binding site model with A) compound
A08 and B) dexamethasone (A01) bound (hydrophobic fields: beige, H-
bond-donating propensity: blue, H-bond-accepting propensity: red, hydro-
gen-bond flip-flop: green). The inner shell (transparent surface) and outer
shell (wire frame) are shown in different style to highlight the two shells of
the surrogate (the front part of the receptor model has been clipped for
clarity).
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scaffold of the new compounds is already represented in the
training set, and because the activity range is within the
broader range of the activities of the training set, therefore al-
lowing a reliable prediction instead of an extrapolation of
binding affinities. The Ki values of the external compounds (as
predicted by Quasar) are shown in Figure 4 B. The predictive r2

value is 0.538, the rmsd for this external set corresponds to a
factor of 4.7 in Ki, and the maximal deviation is 17.9: an appre-
ciable result considering that these ligands were not used for
model construction and selection. The Ki values predicted by
Raptor are shown in Figure 6 B. The predictive r2 value is 0.488,
the rmsd for this external set corresponds to a factor of 20.3 in
Ki, and the maximal deviation is 56.4.

Binding of psychotropic drugs to the GR

To assess the validity of the approach, we simulated the bind-
ing of 24 psychotropic drugs to the GR. For this task we used
the protocol as implemented in the VirtualToxLab,[13, 32] which
includes a full conformational search in aqueous solution and
the identification of the most probable protonation and tauto-
meric state at physiological pH, followed by automated, flexi-
ble docking and calculation of the binding affinity using 6D-
QSAR.[25] The resulting binding affinities are given in Table 2.
Because our GR model was trained using almost exclusively
neutral species (87:1), we calculated the binding affinities of
the psychotropic drugs for both the neutral and charged state
(where applicable) and observed that the charged species—
corresponding to the protonation state in aqueous solution at
pH 7.4—typically yield higher affinities. This might, however,
represent an artifact caused by the electrostatic contribution
to the protein–ligand interaction. It is well known, of course,
that the dielectric properties in the interior of a receptor may
differ significantly from those in aqueous solution. Six com-
pounds—bupropion, fluoxetine, lorazepam, methylphenidate,
trimipramine, and venlafaxine—are marketed as racemic mix-
tures. Here, we simulated both stereoisomers (see Table 2). As
an example, lorazepam is discussed in detail (Figure 9). Al-

though the R isomer engages in hydrogen bonds with the GR,
it features a ninefold weaker activity (Table 2). This is a conse-
quence of the hydrophobic ligand–protein interactions, which
are more pronounced for the S isomer. Table 3 lists the scaled
interaction energies as obtained from the mQSAR simulation
(Quasar).

Figure 10 A reveals details of the binding of clomipramine to
the GR. In the pose that contributes most (a total of eight
were considered in the mQSAR), the proton of the dimethy-
lammonium group points toward its own phenyl moiety, thus
forming a charge–p interaction. Another pose found in the
conformational search (not shown) shows the same H atom
engaging in a weak hydrogen bond with the nearby Asn564
residue (highlighted in Figure 10). Likewise, the ammonium H
atom of mirtazapine engages in a hydrogen bond with Asn564
(Figure 10 B). However, for other tested compounds such as
buspirone, fluoxetin, trimipramin, and trazodone (Figure 10 C),
no such possibility exists, and binding in the neutral state
would make more sense. As our GR model was implemented
in the VirtualToxLab, we calculated the binding affinity toward
all 11 models (androgen, aryl hydrocarbon, estrogen a/b, glu-
cocorticoid, mineralocorticoid, peroxisome proliferator-activa-
ted g, and thyroid a/b receptors, as well as for the enzymes cy-
tochrome P450 2A13 and 3A4). The results, along with those of
>600 other compounds, are accessible through the internet.[33]

A wealth of information on the side effects of psychotropic
drugs is published; summaries can be found, for example, in
Wikipedia.[34] Some of the compounds analyzed in this study
trigger adverse effects via the GR. These include alprazolam
(increased glucocorticoid levels),[35] amitryptyline (induction of
GR mRNA),[36] clomipramine (regulates GR expression),[37] de-
sipramine (GR translocation, increased GR mRNA),[38] escitalo-
pram (reversion of GR immunoreactivity),[38] fluoxetine (enhan-
ces GR function),[37, 39] imipramine (partial agonist-like effects),[40]

moclobemide (increased GR mRNA),[39] reboxetine (increased
cortisol levels),[41] and sertraline (high GR responsiveness).[42]

For other compounds, no or less clear effects were observed.[43]

All this suggests that our computational protocol as imple-
mented in the VirtualToxLab might be well suited for identify-
ing such effects in silico.

Conclusions

Herein we present the generation and validation of a QSAR
model for a series of 118 ligands of the GR (88 compounds in
the training set, 22 in the test set, and eight in the prediction
set). The model was obtained by combining flexible docking
(software Yeti) and multidimensional QSAR (software Quasar
and Raptor). The receptor surrogate is characterized by quasi-
atomistic properties that reflect those of the true biological re-
ceptor. This suggests that the model is, at least in part, inter-
pretable and correlated with structural properties. In contrast
to other modeling studies on the GR,[17a, 44] induced fit, a key
mechanism for ligand binding, was explicitly simulated both in
the docking phase and during the QSAR simulations. The
Quasar simulation yielded a cross-validated r2 value of 0.702
for the training set and a predictive r2 of 0.719 for the internal

Figure 8. Consensus scoring using Quasar and Raptor. The quantity is ex-
pressed as pKi consensus =�log (Ki Quasar/Ki Raptor). Error bars indicate the cumula-
tive standard deviation, esdcumulative =

p
(esd2

Quasar + esd2
Raptor).
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test set. The predictive r2 value for the external set of com-
pounds is 0.538, and the rmsd is a factor of 4.7 in Ki. The
Raptor simulation yielded a cross-validated r2 value of 0.680
for the training set and a predictive r2 of 0.519 for the internal
test set. The predictive r2 value for the external set of com-
pounds is 0.488, and the rmsd is a factor of 20.3 in Ki. Model
sensitivity was assessed by 20 scramble tests, and model ro-
bustness by consensus scoring. The model was then used for
simulating and quantifying the binding of 24 psychotropic
drugs to the GR. Limitations of the current model for the GR
are sensitivity to the formal charge and the molecular weight
of the compound to be tested. In the former instance, charged
species would currently seem to be overestimated, as the
model was trained using predominantly neutral species. The

size of a compound matters, as for very small ligands the auto-
mated docking protocol might not sample enough poses (de-
fault = 25), whereas for large molecules leading to a significant
induced fit (rmsd>5 �), the underlying protocol is unable to
simulate and quantify such large conformational changes at
the protein. The GR model has been added to the VirtualTox-
Lab developed by the Biographics Laboratory 3R.[13, 45] It cur-
rently includes 11 validated models for the androgen, aryl hy-
drocarbon, estrogen a/b, glucocorticoid, mineralocorticoid,
peroxisome proliferator-activated g, and thyroid a/b receptors,
as well as for the enzymes cytochrome P450 2A13 and 3A4.

Supporting Information available : The chemical structures of the
142 compounds used in this study along with a comparison of ex-
perimental and predicted Ki values (Quasar and Raptor) as well as

Table 2. Predicted binding affinities for 24 psychotropic drugs toward the GR.

Compound Formal charge Calculated binding affinity [m] Relative binding affinity[a]

Alprazolam neutral 1.8 � 10�8 0.16
Amitriptyline neutral 2.9 � 10�7 0.010

+ 1 6.5 � 10�9 0.46
Bupropion (R/S) neutral 8.6 � 10�7/1.7 � 10�6 0.0034/0.0018

+ 1 3.6 � 10�8/2.0 � 10�8 0.082/0.15
Buspirone neutral 1.3 � 10�6 0.0023

+ 1 1.3 � 10�10 23
Clomipramine neutral 5.0 � 10�9 0.59

+ 1 2.3 � 10�9 1.3
Desipramine neutral 2.7 � 10�8 0.11

+ 1 8.2 � 10�9 0.36
Doxepin neutral 1.1 � 10�8 0.27

+ 1 2.3 � 10�8 0.13
Duloxetine neutral 1.7 � 10�6 0.0017

+ 1 6.1 � 10�9 0.49
Escitalopram neutral 5.1 � 10�8 0.058

+ 1 4.8 � 10�9 0.62
Flunitrazepam neutral 6.9 � 10�8 0.043
Fluoxetine (R/S) neutral 1.8 � 10�6/4.7 � 10�7 0.0016/0.0063

+ 1 2.7 � 10�10/1.7 � 10�8 11/0.17
Imipramine neutral 6.6 � 10�7 0.0045

+ 1 1.5 � 10�9 2.0
Lorazepam (R/S) neutral 8.3 � 10�8/9.1 � 10�9 0.036/0.33
Methylphenidate (R/S) neutral 3.9 � 10�6/1.0 � 10�3 0.00076/0.0030

+ 1 1.1 � 10�7/1.2 � 10�8 0.027/2.5
Mirtazapine neutral 5.5 � 10�7 0.0054

+ 1 2.0 � 10�10 15
Moclobemide neutral 8.4 � 10�7 0.0035
Modafinil neutral 1.2 � 10�8 0.25
Nortriptyline neutral 3.5 � 10�7 0.0035

+ 1 8.3 � 10�9 0.36
Paroxetine neutral 1.4 � 10�8 0.21

+ 1 6.8 � 10�10 4.4
Reboxetine neutral 5.1 � 10�8 0.058

+ 1 4.8 � 10�9 0.62
Sertraline neutral 9.0 � 10�8 0.033

+ 1 1.6 � 10�9 1.9
Trazodone neutral 2.8 � 10�7 0.011

+ 1 6.4 � 10�10 4.6
Trimipramine (R/S) neutral 4.6 � 10�7/1.1 � 10�8 0.0064/0.27

+ 1 4.4 � 10�10/1.1 � 10�8 6.7/0.27
Venlafaxine (R/S) neutral 6.6 � 10�7/1.1 � 10�6 0.0045/0.0027

+ 1 7.3 � 10�9/1.3 � 10�8 0.41/0.23

[a] Relative binding affinity (RBA) with dexamethasone (A01) as reference compound: Ki exp = 2.963 � 10�9
m ! RBA = 1.0. RBA>1.0 indicates a more active

compound than dexamethasone; RBA<1.0 indicates entities less active than dexamethasone.
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details on the scramble tests are available as Supporting Informa-
tion for this article.
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Figure 9. Details of the binding mode of lorazepam: Lorazepam, Leu563,
and Asn564 are colored by atom type, and the residues lining the hydropho-
bic pocket are depicted in yellow. A) Stereo view: R-lorazepam engages in a
stable hydrogen bond with Leu563 and two weak interactions with Gln570
and Met604 (dashed lines). B) Schematic representation of the hydrogen-
bonding pattern associated with the binding of R-lorazepam to the GR.
C) Stereo view: S-lorazepam does not engage in hydrogen bonds, but fea-
tures stronger hydrophobic interactions.

Table 3. Quantitative aspects of (R/S)-lorazepam binding to the GR.[a]

Isomer Eligand–receptor (Eelectrostatic EvdW EH bonding Epolarization) Eligand desolvation T DS Eligand internal strain Einduced fit Ebind Ki [nm]

R �14.3 (�6.3 �2.1 �2.5 �3.4) + 3.6 + 0.5 + 0.4 + 0.3 �9.5 83
S �15.2 (�6.7 �4.4 �0.0 �4.1) + 3.6 + 0.5 + 0.1 + 0.2 �10.8 9.1

[a] All energies are given in kcal mol�1; EvdW: energy contribution from van der Waals interactions; Ebind : calculated binding energy; Ki : calculated binding af-
finity. Eligand–receptor = Eelectrostatic + EvdW + EH bonding + Epolarization [cf. Equation (1)] .

Figure 10. Details of the binding mode of three psychotropic drugs to the
GR (stereo view). The ligands and Asn564 are colored by atom type, and the
residues lining the hydrophobic pocket are depicted in yellow. A) Clomipra-
mine: the ammonium H atom does not engage in a hydrogen bond with
the GR. B) Mirtazapine: the hydrogen bond between the ammonium H atom
and Asn564 (white dashed line) is too long (2.37 �), not linear (1278), and
therefore very weak. C) Trazodone: again, the ammonium H atom cannot
engage in a hydrogen bond with the receptor.
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